A STRONG COMPARISON PRINCIPLE FOR THE p-LAPLACIAN
نویسنده
چکیده
We consider weak solutions of the differential inequality of pLaplacian type −∆pu− f(u) ≤ −∆pv − f(v) such that u ≤ v on a smooth bounded domain in RN and either u or v is a weak solution of the corresponding Dirichlet problem with zero boundary condition. Assuming that u < v on the boundary of the domain we prove that u < v, and assuming that u ≡ v ≡ 0 on the boundary of the domain we prove u < v unless u ≡ v. The novelty is that the nonlinearity f is allowed to change sign. In particular, the result holds for the model nonlinearity f(s) = sq − λsp−1 with q > p− 1.
منابع مشابه
On a p-Laplacian system and a generalization of the Landesman-Lazer type condition
This article shows the existence of weak solutions of a resonance problem for nonuniformly p-Laplacian system in a bounded domain in $mathbb{R}^N$. Our arguments are based on the minimum principle and rely on a generalization of the Landesman-Lazer type condition.
متن کاملNodal domain theorem for the graph p-Laplacian
In this work we consider the nonlinear graph p-Laplacian and the set of eigenvalues and associated eigenvectors of this operator defined by a variational principle. We prove a unifying nodal domain theorem for the graph p-Laplacian for any p ≥ 1. While for p > 1 the bounds on the number of weak and strong nodal domains are the same as for the linear graph Laplacian (p = 2), the behavior changes...
متن کاملOn the Strong Maximum Principle for Fully Nonlinear Degenerate Elliptic Equations
We prove a strong maximum principle for semicontinuous viscosity subsolutions or supersolutions of fully nonlinear degenerate elliptic PDE's, which complements the results of 17]. Our assumptions and conclusions are diierent from those in 17], in particular our maximum principle implies the nonexistence of a dead core. We test the assumptions on several examples involving the p-Laplacian and th...
متن کاملInverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملMixed Strong Form Representation Particle Method for Solids and Structures
In this paper, a generalized particle system (GPS) method, a general method to describe multiple strong form representation based particle methods is described. Gradient, divergence, and Laplacian operators used in various strong form based particle method such as moving particle semi-implicit (MPS) method, smooth particle hydrodynamics (SPH), and peridynamics, can be described by the GPS metho...
متن کاملPositive solution for Dirichlet $p(t)$-Laplacian BVPs
In this paper we provide existence results for positive solution to Dirichlet p(t)-Laplacian boundary value problems. The sublinear and superlinear cases are considerd.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007